
2024 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

Asynchronous-Channels Within Petri Net-Based
GALS Distributed Embedded Systems Modeling

Filipe Moutinho and Luı́s Gomes, Senior Member, IEEE

Abstract—Model-based development approaches can provide a
major contribution in the development of globally asynchronous
locally synchronous distributed embedded systems (GALS-DES)
if supported by suited modeling formalisms and design au-
tomation tools. The use of Petri nets (either low-level or high-
level classes) extended with asynchronous-channels (ACs), time
domains, priorities, inputs, and outputs is proposed in this paper
to model GALS-DES (composed by deterministic components),
ensuring that the created GALS model is locally deterministic,
distributable, network-independent, and platform-independent.
The proposed ACs, with high level of abstraction, specify the
components interaction through Petri net objects with specific
attributes that unambiguously identify this interaction within
the GALS model. Two algorithms are proposed to translate
and decompose the GALS model into Petri net models without
ACs, which can be used as inputs in model-checking tools and
automatic code generators supporting GALS-DES verification
and implementation. The specification of a small goods lift
distributed controller illustrates the use of the proposed ACs.

Index Terms—Asynchronous channels, distributed embedded
systems (DESs), globally asynchronous locally synchronous
(GALS) systems, model-based development (MBD), Petri nets.

I. INTRODUCTION

D ISTRIBUTED embedded systems (DESs), networked
embedded systems, or cyber physical systems (CPSs)

are sets of computer control systems (often embedded in
devices, machines, or infrastructures) in interaction, perform-
ing specific tasks, usually to improve our quality of life.
A single automation system or embedded system can also be
understood as a distributed system, if composed by a set of
components in interaction.

The implementation of an automation system or embedded
system as a network of distributed components and sensors
(rather than being implemented as a standalone system) may
lead to higher performance, lower power consumption, lower
electromagnetic interference (EMI), and lower production

Manuscript received May 31, 2013; revised June 06, 2014; accepted
June 28, 2014. Date of publication July 23, 2014; date of current ver-
sion November 04, 2014. This work was supported by Portuguese Agency
Fundação para a Ciência e a Tecnologia (FCT) in the framework of project
PTDC/EEI-AUT/2641/2012. The work of F. Moutinho was supported by FCT
Grant SFRH/BD/62171/2009. Paper no. TII-14-0230.

The authors are with the Faculty of Sciences and Technology, Universidade
Nova de Lisboa, 2829-516 Caparica, Portugal; and also with the Center
of Technology and Systems, Instituto de Desenvolvimento de Novas Tec-
nologias (UNINOVA), 2829-516 Caparica, Portugal (e-mail: fcm@uninova.pt;
lugo@fct.unl.pt).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2014.2341933

costs. This is justified, because each part of the system can
be implemented in the most suited platform/device, working
at an optimized clock frequency (to reduce power consumption
and EMI). Several criteria, such as system performance, power
consumption, EMI, and cost, can be considered to select the
most appropriate implementation platforms, which may be
composed by software and hardware components. Addition-
ally, the implementation of a system using a set of components
may allow the reuse of previously developed components,
reducing the development time and the production costs.
However, distributed systems tend to be more complex than
centralized systems, due to the complexity introduced by the
components interaction [1].

Model-based development (MBD) or model-driven devel-
opment approaches, as the model-driven architecture (MDA)
initiative defined by the Object Management Group (OMG)
[2], have been proposed to develop software systems. MBD
approaches, such as those presented in [3]–[10], have also
been proposed to develop industrial control systems, em-
bedded systems, and cyber physical system (CPS), resulting
in systems better documented, developed in less time, with
less development errors, and benefiting from reusability of
models to produce new code for different platforms. They
can also improve the interaction between customers, systems
analysts, and the development team, allowing the development
of improved embedded systems.

Several graphical modeling formalisms, such as finite state
machines, Statecharts [11], Petri nets [12]–[14], unified mod-
eling language (UML)-modeling and analysis of real-time
and embedded (MARTE) systems [2], and systems model-
ing language (SysML) [2], have been successfully used to
develop computer control systems using MBD approaches.
Among these formalisms, we highlight Petri nets, which
are a graphical formalism with the capability to explicitly
specify parallelism, concurrency, and synchronization (usual
features of automation and embedded systems). Petri nets
have a strong mathematical definition and a well-defined
semantics, allowing the use of verification and automatic code
generation tools [14] to achieve the mentioned MBD ben-
efits. The international standards International Organization
for Standardization/International Electrotechnical Commission
(ISO/IEC) 15909-1 and 15909-2 define low-level and high-
level Petri nets (HLPNs) [15]. Several autonomous Petri net
classes have the capability of specifying not only the controller
but also its interaction with the environment, namely the
synchronized Petri nets (SPNs) [16], the net condition/event
systems (NCESs) [17], [18], the signal interpreted Petri nets

1551-3203 c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



MOUTINHO AND GOMES: ACs WITHIN PETRI NET-BASED GALS DESs MODELING 2025

[19], and the input–output place-transition (IOPT) Petri net
class (IOPT net) [20].

Globally asynchronous locally synchronous (GALS)
systems, initially proposed in [21], are composed by a set
of synchronous components in interaction, bringing together
the benefits of synchronous and asynchronous systems.
Despite the possible advantages and interest of the scientific
community, the application of GALS techniques is rare
[22]. The lack of computer-aided design (CAD) tools to
automate their development is pointed in [22] as a reason
that may justify the low interest in GALS techniques by the
industry. Krstić et al. [23] argue that the strength of GALS
systems is based on its design methods that will support
the implementation of large systems-on-chip (SoCs) in the
future. A GALS system is often understood as a SoC, but
it can also be a system-off-chip, such as in [24], where a
GALS model was proposed for the IEC 61499 international
standard. In this paper, the term GALS DES is understood as
a distributed system (geographically distributed, in a single
implementation platform, or in a single chip), composed
by a set of synchronous components (which can include
hardware and software components), where each component
is synchronous with a specific clock signal.

To support an MBD approach for GALS-DES, Petri nets
with time domains, priorities, inputs, and outputs are extended
in this paper with three types of generic asynchronous chan-
nels (ACs). This MBD approach is based on the network-
and platform-independent specification of GALS-DES through
Petri net models, which support their simulation (using simu-
lation tools), the verification (using model-checking tools), and
the components and communication channels implementation
(using automatic code generators). The use of network- and
platform-independent models allows a later decision about
the implementation platforms and communication networks,
enabling the implementation in the most suited platforms,
with the most suited communication networks, to obtain the
required power consumption, performance, EMI, and plat-
form costs. Additionally, these platform-independent Petri net
models support the automatic code generation of software
programming languages and hardware description languages,
to be deployed into heterogeneous implementation platforms.

The proposed ACs, which are represented by Petri net
objects with specific attributes, specify the interaction between
synchronous components (specified by Petri net submodels).
The ACs, with high-level of abstraction, abstract any type of
communication network. The use of Petri nets extended with
these channels, leads to specifications where the focus is on the
components specification, on what triggers their interaction,
and on the consequences of that interaction, and not on how
they communicate. The simulation and verification of these
specifications provide behavioral proprieties that exist in the
GALS-DES whatever their communication networks are. The
verification of these specifications additionally provides data
to scale the memory resources of the components and of the
communication nodes, supporting the automatic generation of
the GALS-DES implementation code. It is important to note
that the use of Petri net classes extended with the proposed
channels and with time domains and priorities, ensure that the

resulting GALS models are locally deterministic, distributable,
network-, and platform-independent and that identify what is
components interaction and what is components computation,
avoiding ambiguities both by modelers and design automation
tools.

The advantages of specifying GALS-DES through Petri
nets extended with generic ACs rather than specifying GALS-
DES through Petri nets without these channels are presented
in Section II. Also in Section II, the proposed ACs are
compared with the existing communication channels. Section
III briefly presents the concept of time domain, how it adds the
GALS execution semantics into Petri nets, and how priorities
can be used to solve conflicts and behavioral ambiguities.
Three generic ACs, for (low-level and high-level) Petri nets,
are defined in Section IV, to support the specification in
a generic way of the asynchronous interaction between the
synchronous components of GALS-DES. The behavior of
the GALS-DES specifications can then be verified using
model-checking tools, which also provide information about
the required resources to implement the systems. To enable
the use of a model-checking tool, a translation algorithm
is proposed in Section IV. Section V describes how the
specification can be automatically decomposed into a set
of implementable submodels, supporting the implementation
through automatic code generators. A tool chain framework
[25] (http://gres.uninova.pt/) was extended and used to develop
GALS-DES. One of those systems (the distributed controller
of a small goods lift) is presented in Section VI, illustrating
the defined channels application. Finally, Section VII presents
the conclusion.

II. RELATED WORK

A. Petri Nets Supporting GALS Systems Modeling

Most Petri net classes are suited to specify distributed
systems; however, just a few support the specification of
GALS systems. Using SPNs [16], NCESs [17], [18], signal
net systems (SNSs) [26], [27], distributed timed-arc Petri
nets (DTAPNs) [28], place/transition-nets with localities (PTL-
nets) [29], elementary net systems with localities (ENL-
systems) [30], or the IOPT nets [20] extended for GALS
systems [31], it is possible to specify GALS systems.

In SPNs [16], each transition is synchronized by an external
event. Given that each external event can synchronize a set of
transitions and different external events are independent, SPNs
can be used to create GALS models. The interaction between
synchronized submodels can be specified through additional
submodels.

NCESs and SNSs, being nontimed or timed, also support
the specification of GALS systems. To specify synchronous
components using nontimed models, “greedy” transitions con-
nected to sets of transitions through event signals are used to
create sets of synchronized transitions (forcing these transi-
tions to fire), as presented in [26]. To specify synchronous
components using timed models, “synchronization sets” can
be used to create sets of synchronized transitions [26]. Given
that, the communication channels that support the interaction
between components can also be specified through (NCES or



2026 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

SNS) submodels, the global GALS systems can be specified
through NCES or SNS models.

DTAPNs [28] can support the specification of GALS sys-
tems; however, this Petri net class is not appropriate to
specify deterministic components. In DTAPN, places can
have different clock rates and tokens have associated ages,
which are 0 in the initial marking and when they are added
to places, becoming older at their places clock rates. The
arcs connecting places to transitions may have an associate
annotation with a time interval, stating the age of the tokens
that can enable the transition. Given that enabled transitions
of DTAPN may fire or not (are not synchronized), this Petri
net class is nondeterministic, making it unsuitable to specify
the deterministic components of GALS systems.

PTL-nets [29] and ENL-systems [30] have been proposed
to specify GALS systems. These Petri net classes associate
the notion of locality to transitions, creating Petri net models
with sets of synchronous transitions (specifying synchronous
components). The communication between components is
specified through buffer places (BPs). But BPs do not support,
for instance, the specification of communication channels with
undefined communication delays. Additionally, these two Petri
net classes (such as the DTAPN) are autonomous, not support-
ing the specification of the controllers’ inputs and outputs.

Also to support the specification of GALS systems, the
IOPT net class [20] was extended in [31]. The time-domain
concept was proposed to associate each place and each transi-
tion with a specific synchronous submodel that specifies a syn-
chronous component. To specify the communication between
those Petri net submodels, one type of AC was presented.
The use of this channel, when compared to the use of BPs
(used in [29], [30] to specify components interaction), has the
advantage of providing a network independent specification.
This specification supports the verification and provides high
flexibility in the implementation phase, supporting the use of
the most suited communication channels, network protocols,
and network topologies, to interconnect the distributed syn-
chronous components.

The specification of GALS-DES through a Petri net-based
formalism extended with ACs and time domains (TDs), when
compared to their specification through SPNs, NCESs, SNSs,
PTL-nets, or ENL-systems, has some advantages, as presented
in Table I. The main advantages are the use of a formalism,
which besides ensuring that the created models are GALS, it
also ensures that the created models are always distributable,
network-independent, and free of structural ambiguities (re-
gardless of specifying the desired behavior). These models
are always distributable, because the time-domain concept
together with the proposed ACs ensures that all normal places
and transitions belong to well delimited synchronized domains,
and two synchronized domains (two subnets with different
time domains that specify two different components) can
only be connected through ACs, ensuring that those subnets
cannot be connected, for instance, through a normal arc or an
event signal [17] that would make the model not distributable
(since it does not specify the asynchronous interaction).
Given that, the proposed ACs specify the interaction without
providing any specific details about how the messages are

TABLE I
ADVANTAGES OF USING PETRI NETS EXTENDED WITH ACS AND TDS IN

THE DEVELOPMENT OF GALS-DES

exchanged and about the communication delay, they ensure
network-independent specifications. Additionally, these ACs
abstract the components’ interaction through Petri net objects
with specific annotations or attributes that are graphically
represented through text labels and/or through Petri net objects
with specific shapes, ensuring that the communication and
the computation are unambiguously identified in the models
(which is not true when communication is specified with
submodels without specific annotations or attributes). This
enables, without requiring a later identification on which are
the channel submodels and the component submodels, the
use of automatic code generator tools to generate the com-
munication nodes implementation code and the components
implementation code.

Specifying the interaction using the proposed ACs, rather
than through submodels without specific annotations or at-
tributes, can reduce the global GALS-DES model size, as
illustrated in Fig. 1. Fig. 1(a) model with ACs has 18 nodes,
whereas Fig. 1(b) model (where the ACs were replaced
by their behaviorally equivalent models) has 36 nodes (the
reference nodes were not counted). However, this additional
advantage was not the main motivation to define the proposed
channels.

It is important to note that when using low-level Petri nets,
such as SPNs, PTL-nets, or Petri nets with ACs and TDs,
to ensure locally determinism, it is not sufficient to have all
transitions synchronized, it is also required to ensure that
the created models are free from effective conflicts. To solve
conflicts, transitions’ priorities [16] can be used.

An overview of the channels that were proposed for Petri
nets is presented in Section II-B. Most of those channels are
inappropriate to specify the exchange of messages between
GALS systems’ components through network communication
nodes, or do not provide network-independent specifications.
Finally, the ACs proposed in this paper are compared with
other ACs, such as the one presented in [31].

B. Communication Channels in Petri Nets

This section presents an overview of the existing commu-
nication channels for Petri nets, and compares the existing
channels with the ones defined in this paper, as summarized
in Table II. The presented survey summary refers to papers
proposing or using channels to specify the interaction be-
tween Petri net submodels, in order to develop (software and



MOUTINHO AND GOMES: ACs WITHIN PETRI NET-BASED GALS DESs MODELING 2027

Fig. 1. (a) Global model of a distributed system. (b) Model that presents
the execution semantics of the (a) model. (c) Submodels that support the
components implementation of the (a) model.

TABLE II
ADVANTAGES OF USING THE PROPOSED ACS

hardware) systems. It excludes papers and works about the
use of Petri nets to model and analyze specific communication
protocols, as in [32] and [33]. The channels are classified in
this section as symmetrical or asymmetrical (directed) and as
synchronous or asynchronous.

Synchronous channels (SCs, symmetrical or asymmetrical)
are used in Petri nets to specify the interaction between
transitions, which may belong to different Petri net submodels
(modules), considering communications with zero-time delay.
Probably the most well-known communication channel for
Petri nets is the symmetrical and SC proposed in [34]. When
two transitions are connected through a symmetrical SC, both
transitions must be simultaneously enabled to fire, and they
will always fire atomically at the same time instant. The event
signals from NCESs [17], [18] and SNSs [27] can be called
asymmetric (directed) SCs, such as those proposed in [35]
and [36]. When two transitions are connected through an
asymmetrical (directed) SC, one transition is the source and
the other is the target. When the source fires, the target also

fires (if enabled) at the same time instant. These channels do
not support the specification of communications with delays
(which may be unknown) and through unreliable channels
(channels that may not ensure the integrity of the message
or may loose it).

Several papers, such as in [37], [38], and [29], propose the
use of BPs to specify the asynchronous interaction between
submodels. These buffers are suited to specify interactions
through shared variables (after sending a message, it is imme-
diately available to the receiver), but unappropriated to specify
the exchange of messages, for instance, through unreliable
communication channels or through networks with variable
communication delays, where a message is only available to
the receiver after a variable amount of time.

To specify the exchange of messages (between distributed
synchronous components) through communication channels
that introduce delays (common in real communication scenar-
ios), an AC was introduced in [31]. This channel can be used to
connect transitions from the source component to transitions
of the target component, and have the following execution
semantics: when the source transition fires, an event is sent to
the target transition, which will fire (if enabled) in a future time
instant. This channel, which specifies communications with
delays, is suited to specify the interaction through unreliable
channels or through channels with uncertain communication
time.

An improved version of the channel introduced in [31] is
defined in Section IV. The new channel, named as simple AC
(SimpleAC), is defined as a subnet with a special type of place
connected to transitions using a special type of arc (instead
of being defined as a Petri net page annotation). Among the
differences between the new channel and the previous one
we highlight the possibility to have a set of target transitions
instead of just one.

To support the specification of the interaction between
submodels obtained after a model transformation, an asyn-
chronous channel was introduced in [39]. This channel sends
messages from a source transition to a target transition and
additionally returns to the source component messages with
feedback about the target transition firing. The main disad-
vantage of this channel, such as in the channel proposed
in [31], is that it can only have one target transition. The
behavior specified by this channel can be specified through
the channels defined in Section IV, using two SimpleACs and
one Not-enabled AC, but with the advantage of being able to
be connected to multiple target transitions.

Three ACs were introduced in [40] for HLPNs, supporting
the specification of data transmission. The disadvantage of
these channels is their first in, first out (FIFO) semantics,
which restrict their application to the specification of com-
munication networks that ensure the order of the messages,
not being network-independent as desired in the current paper.
The channels proposed in Section IV do not specify the order
of the messages, as desired.

III. TIME DOMAINS AND PRIORITIES

The ACs defined in this paper support the specifica-
tion of the asynchronous interaction between synchronous



2028 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

components of distributed GALS systems. A GALS system is
composed by a set of synchronous components in interaction,
where each component has a specific execution step, (time do-
main), which is independent from other components execution
steps (with distinct time domains). In a hardware component,
the execution step is often given by its clock signal. The time-
domain concept was proposed in [31] and introduce the GALS
execution semantics into Petri nets, enabling the specification
of GALS systems components using Petri nets and ensuring
that the created GALS models are distributable.

A Petri net class that includes the concept of time-domain is
a tuple that should include at least three sets and two functions:
PN = (P, T,A,priority, td). P is a finite set of places, T is a
finite set of transitions, and A is a set of arcs, such that A ⊆
((P × T ) ∪ (T × P )) and ∀(n1×n2)∈A(td(n1) = td(n2)). Pri-
ority is a partial function that applies transitions to positive
integers: priority: T ′ → N, such that any two transitions with
the same source place must have different priorities (the one
with lower value has higher priority), solving conflicts. td is a
function that applies Petri net nodes (places and transitions) to
positive integers that identify the associated components: td:
(P ∪ T ) → N.

Time domains make Petri nets totally synchronized, with
single-server semantics, and with well delimited synchronized
domains. All transitions with a specific time domain are
synchronized by an implicit external event, making the model
totally synchronized (totally SPNs were proposed in [16] but
with explicit external events). This means that the transitions
that are enabled when the associated event occurs and not
in conflict (not in an effective conflict), will fire simulta-
neously at that instant. All effective conflicts are solved by
priorities. Additionally, each transition can only fire once at
each execution step (single-server semantics [41]). All nodes
with a specific time domain belong to the submodels (which
are well delimited, making them distributable) of a specific
synchronous component. Given that, in real implementations,
two actions from two distributed components (which are
synchronized by different clock signals) never fire exactly at
the same time instant, it was defined that two transitions with
different time domains never fire simultaneously. The time-
domain concept do not provide any information about the
execution frequencies (ensuring platform-independent speci-
fications), which are defined in a later stage of the develop-
ment flow.

Time domains’ and transitions’ priorities (given by the
priority function) make low-level Petri net models locally
deterministic, but are insufficient to ensure that HLPN models
are locally deterministic. To ensure locally determinism in
HLPNs, it is additionally required to avoid ambiguities
(if several bindings of tokens can enable a transition, when
it fires which tokens are destroyed?). To avoid HLPNs ambi-
guities, several rules can be considered [42], setting tokens’
priorities.

IV. ASYNCHRONOUS CHANNELS

To specify the asynchronous interaction (the exchange of
messages) between GALS distributed components specified by
Petri nets with time domains, three types of ACs are proposed:

1) simple AC (SimpleAC); 2) acknowledged AC (AckAC);
3) not-enabled AC (NotAC).

This section presents these channels’ definition and execu-
tion semantics for low-level and HLPN classes. When used in
high-level classes, ACs have extra annotations, specifying the
data variables that are transmitted by the channel.

Each AC specifies message sending from one transition
(source transition of the source component with a specific
time domain) to a set of transitions (target transitions of
the target component with another specific time domain). A
SimpleAC sends a message to the target transitions each time
the source transition fires; an AckAC sends a report message
(acknowledged) to the target transitions each time the source
transition receives a message; and a NotAC sends a report
message to the target transitions each time the source transition
receives a message and does not fire (not enabled). There is a
delay between the moment when the message leaves the source
component and the moment when it arrives into the target
component. The message is then replicated and simultaneously
delivered to all its target transitions. Only the target transitions
that are enabled (when the message is delivered) fire.

An AC is a subnet composed by an asynchronous channel
place, connected to transitions using asynchronous chan-
nel arcs (one source channel arc and one or more target
channel arcs). An asynchronous channel place is a (special
type of) place graphically represented by a cloud, which has
the inscription “ACK” if it is an AckAC, the inscription
“NOT” if it is a NotAC, or without inscription if it is a
SimpleAC. Asynchronous channel arcs are the special types
of arcs graphically represented by dashed arrows.

Fig. 1(a) presents a simple Petri net model with two Sim-
pleACs (AC1 and AC3), one AckAC (AC2), and one NotAC
(AC4), specifying the interaction between four distributed
components. When transition T1 fires a message, it is sent
through AC1 to T2, which then sends a new message (an
acknowledged) through AC2 to T3 and T4. Additionally, when
the message is delivered to T2, which is not enabled (it
does not fire), another message (a not-enabled report) is sent
through AC4 to T6. If place P3 was marked, then T2 would
fire, and instead of being sent a message through AC4, a
message through AC3 (to T5) would be sent.

A. Definition

A set of ACs is given by AC = (Pac, As, At), where Pac is
a set of asynchronous channel places, such that Pac = (Psac ∪
Paac ∪ Pnac) and Psac ∩ Paac ∩ Pnac = ∅, As = (Ts × Pac) is
a set of source channel arcs connecting transitions (Ts ⊆ T )
to asynchronous channel places, and At = (Pac × Tt) is a
set of target channel arcs connecting asynchronous channel
places to transitions (Tt ⊆ T ). Each AC has one asynchronous
channel place (#Pac = #AC) that: 1) has one and only one
input arc, which is a source channel arc: ∀pac∈Pac

(∃!as∈As
:

as = ts × pac); and 2) has one or more output arcs (tar-
get channel arcs): ∀pac∈Pac

(∃at∈At
: at = pac × tt). All tar-

get transitions of an AC must have equal time-domains:
∀(pac×t1),(pac×t2)∈At

(td(t1) = td(t2)). One transition cannot
be target of two ACs: ∀(pac1×t1),(pac2×t2)∈At

(pac1 	= pac2 ⇒
t1 	= t2) (which will allow a much more simple execution



MOUTINHO AND GOMES: ACs WITHIN PETRI NET-BASED GALS DESs MODELING 2029

semantics definition for ACs). In the unlikely modeling sit-
uation that one wants to consider one transition as target of
two ACs, it will be always possible to duplicate the target
transition obtaining similar results. The source transition time
domain of an AC must be different from the time domain of its
target transitions: ∀(ts×pac1)∈As

∀(pac2×tt)∈At
(pac1 = pac2 ⇒

td(ts) 	= td(tt)). If the AC is an AckAC or a NotAC, its
source transition must be the target transition of another AC:
∀(ts×px)∈As

(px ∈ Paac ∨ px ∈ Pnac)∃!(pac×tt)∈At
(tt = ts).

When used in HLPNs, AC = (Pac, As, At, cv), where cv :
A′

s ⇒ P (V ) is a partial function applying source channel
arcs to subsets of sorted variables (V ), specifying the data
transmitted from the source into the target transitions. V is
defined in the ISO/IEC 15909. Each AckAC or NotAC can
only send variables that were received by its source transition
(coming from the associated AC).

B. Semantics

The behavior of any Petri net model with ACs, such as
the one presented in Fig. 1(a), can be specified through an
equivalent Petri net model without ACs, which presents the
semantics of the initial model, as illustrated in Fig. 1(b).
Although Fig. 1(b) shows a set of disconnected subnets,
it presents a single model. To the merge the subnets, the
reference transitions [15] [represented in Fig. 1(b) by dashed
squares] must be merged with the transitions that they refer.
Fig. 2 presents the translation algorithm that reads the global
model and creates a new model where each AC is replaced
by its equivalent subnet. As presented in Fig. 2, the SimpleAC
and the AckAC have equal equivalent subnets [as illustrated in
Fig. 1(b)]; however, the SimpleAC equivalent subnet is con-
nected to its source transition, whereas the AckAC equivalent
subnet is connected to the transition tdeliver of the AC that
is the source of its source transition. The NotAC equivalent
subnet extends the SimpleAC equivalent subnet [as illustrated
in Fig. 1(b)].

V. VERIFICATION AND IMPLEMENTATION OF GALS-DES

The defined channels are proposed not only to enable the
distributed system specification using Petri nets, but also to
support its verification and implementation. Since it is possible
to transform a Petri net model with ACs into a Petri net model
without channels and with the same behavior, the resulting
Petri net model can be used as input in model-checking
tools that do not know the AC concept. State-space-based
model-checking tools provide model proprieties’ verification,
supporting behavioral analysis and data about the required
resources to implement the distributed system. The model-
checking tool [25], which was extended to support the state-
space generation of models with time domains, supports the
search for proprieties (in the state space, also known as
reachability tree), which can be expressed in computation tree
logic (CTL).

After model verification and before its implementation as a
set of distributed components, it is required to decompose the
model with ACs into a set of implementable submodels, speci-
fying the distributed components. To create the implementable

Fig. 2. Translation algorithm that reads the global model and creates the
equivalent model without ACs.

submodel of one specific component, the decomposition algo-
rithm presented in Fig. 3 makes a copy of the global model,
removes the objects and annotations that do not specify that
component, and inserts extra subnets and input and output
events to specify the interaction between the component and
the communication nodes. The four submodules presented in
Fig. 1(c) were created using this algorithm.

Input and output events (IE and OE) are used to specify the
interaction between the components and the communication
nodes, and can also be used to specify the interaction between
the components and the environment. Events are associated to
Petri net transitions, given by the partial functions ie : T ′ →
P (IE) and oe : OE → T . When used in HLPNs, events can
have associated variables (V ) given by iev : IE’ → P (V ) and
oev : OE’ → P (V ).

VI. APPLICATION EXAMPLE

To validate the defined channels, the IOPT net class [20],
[31] and its tool chain framework [25] (http://gres.uninova.pt/)
were extended with the proposed ACs and used to develop
GALS-DES. The extended framework supports GALS-DES
specification (using a model editor), verification (using a



2030 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

Fig. 3. Decomposition algorithm that reads the global model and creates the
components’ submodels that support their implementation.

model-checking tool), and implementation [using automatic
C and very high speed integrated circuit (VHSIC) hardware
description language (VHDL) code generators [43], [44]]. To
implement the communication nodes, based on the information

Fig. 4. Small goods lift layout.

about the required resources (obtained in the associated state-
space), the approaches proposed in [45] and [46] were used.

To illustrate the application of the defined channels using
the extended Petri net class and associated tools, this section
presents an application example. The distributed controller of
the small goods lift, represented in Fig. 4, was manually spec-
ified as presented in Fig. 5. The model specifies a controller
with three distributed components (as presented in Fig. 6):
component 1 controlling the second floor, with an elevator
door, two push buttons (one to go up and the other to go down),
and a push button to turn ON a hurry bell on the other floor;
component 2 controlling the motor and the limit switches (each
floor has a limit switch); and component 3 controlling the first
floor, with an elevator door, two push buttons (to go up and to
go down), the bell, and a push button to turn OFF the bell. Each
door has a lock and a sensor indicating if it is open or closed.
In the initial state, the elevator is in the first floor (place floor1
marked), the elevator is stopped (motorUp and motorDown
unmarked), the first floor door is open (d1open marked), the
second floor door is locked (d2locked marked), no request
has been registered (b2DownOff, b2UpOff, b1DownOff, and
b1UpOff unmarked), and the bell is OFF (hurryBell unmarked).

Due to space constraints just a small part of the controller
model is described. Each time the button that is in the second
floor to go down is pressed (it is associated to transition
b2DownEv), a message is sent (from the component 1) through
the SimpleAC C1 to transitions t22 and t12 (of the component
2). If there is no previous request to go down (noReqDown
marked) and the elevator is not in floor 1 (notFloor1 marked),
the place reqDown is marked. Additionally, if the elevator is
not in floor 1, t12 fires and a message is sent through the
SimpleAC C3, otherwise t12 does not fire and a message is
sent through the NotAC C2. When reqDown is marked and
the elevator is stopped (stop marked), place p9 is marked, and
one message is sent through the SimpleAC C6 to lock the
floor 2 door. When the door is closed (d2 closed marked), t5
fires, the door is locked (d2 locked is marked), and a message
is sent through the SimpleAC C7 to fire t20, turning ON the
motor to go down (motorDown is marked). Whenever the turn
ON bell is pressed, one message is sent through the SimpleAC
C25 to turn ON the bell. If the bell is ON (p15 marked), t38
fires and the bell is turned ON (hurryBell is marked), if the
bell was already ON, the t38 does not fire. In both situations,
a message in sent through the AckAC C26 to mark place p6,
and the turn on bell process can be repeated.



MOUTINHO AND GOMES: ACs WITHIN PETRI NET-BASED GALS DESs MODELING 2031

Fig. 5. Distributed controller model of a small goods lift.

Fig. 6. Small goods lift controller block diagram.

After the system specification, the model was validated
using the model-checking tool [25], which generates the
associated state-space and relies on a query engine to extract
proprieties. It was verified that the system model has a state
space with 177 468 states and has no deadlocks. Additionally,
a set of significant proprieties were also verified, for instance,
that there is no state where the motor is ON and the doors are
unlock (motorDown = 1 OR motorUp = 1) AND (d1 locked =
0 OR d2 locked = 0), as required. This tool also provides the
memory resources length, which is required to implement the

controllers and the communication channels [45], [46]. After
proprieties verification, automatic code generators (such as
[43], [44]) can be used to obtain the implementation code to be
directly deployed into execution platforms, considering three
components/controllers. Besides being platform-independent,
the specification is also network-independent, supporting the
implementation using different communication channels, net-
work topologies, and network protocols.

VII. CONCLUSION

Petri net classes extended with the defined ACs and with
time domains, priorities, inputs, and outputs, support a model-
MBD for DESs composed by synchronous and deterministic
components in interaction (GALS-DES). This MBD approach
includes specification, simulation (using simulation tools),
verification (using model-checking tools), and implementation
(using automatic code generators). These Petri net classes
ensure that the created models are always GALS, locally de-
terministic, distributable, network-independent, and platform-
independent, and unambiguously identifying the components
interaction and components computation, ensuring models
readability both by modelers and design automation tools.
Additionally, these classes focus the modelers in the com-
ponents’ specification and not on the communication details.



2032 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 10, NO. 4, NOVEMBER 2014

These models provide high flexibility in the implementation
phase, supporting the deployment into the most suited imple-
mentation platforms, operating at the most suited execution
frequency, using the most suited communication channels,
network protocols, and network topologies, to interconnect the
distributed components. This will simplify the achievement of
the desired performance, power consumption, EMI, and pro-
duction cost, and will also support porting to future implemen-
tations in new platforms. These models support the implemen-
tation (using automatic code generators) in heterogeneous plat-
forms [such as micro-controllers and field programmable gate
arrays (FPGAs)], with safe or unsafe communication channels,
with different network protocols [such as Ethernet, controller
area network (CAN), and Profibus], and with different network
topologies such as point-to-point, star, bus, and ring.

To validate the proposed ACs, the associated MBD ap-
proach, and the proposed algorithms, the tool chain frame-
work (http://gres.uninova.pt/) was extended during this work
and used to develop distributed GALS systems. The model
edition tool was extended to support the creation of models
with the proposed channels. The translation algorithm was
implemented in the model-checking tool to support GALS-
DES models’ validation. The extended model-checking tool
supports the behavioral verification of the created models
(allowing bugs identification and correction during the design
phase of the project) and the dimension of the resources that
are required to implement the components and the commu-
nication nodes. The proposed decomposition algorithm was
implemented to support the global model decomposition into a
set of implementable submodels, which can be used as input in
automatic code (C code and VHDL code) generators. Model-
checking tools and automatic code generators can reduce
development errors and time. The small goods lift distributed
controller model, presented in this paper, illustrates the use of
the defined channels, the associated MBD approach, and the
extended tool chain framework.

REFERENCES

[1] T. Nolte and R. Passerone, “Guest editorial special section on real-time
and (networked) embedded systems,” IEEE Trans. Ind. Informat., vol. 5,
no. 3, pp. 198–201, Aug. 2009.

[2] Object Management Group. (2013) [Online]. Available: http://www.
omg.org/

[3] V. Vyatkin and H.-M. Hanisch, “Bringing the model-based verification
of distributed control systems into the engineering practice,” in Proc.
6th IFAC Workshop Intell. Manuf. Syst., Poznan, Poland, Apr. 2001,
pp. 152–157.

[4] N. Hagge and B. Wagner, “A new function block modeling language
based on Petri nets for automatic code generation,” IEEE Trans. Ind.
Informat., vol. 1, no. 4, pp. 226–237, Nov. 2005.

[5] M. Di Natale, L. Guo, H. Zeng, and A. Sangiovanni-Vincentelli, “Syn-
thesis of multitask implementations of simulink models with minimum
delays,” IEEE Trans. Ind. Informat., vol. 6, no. 4, pp. 637–651, Nov.
2010.

[6] E. Estevez and M. Marcos, “Model-based validation of industrial control
systems,” IEEE Trans. Ind. Informat., vol. 8, no. 2, pp. 302–310,
May 2012.

[7] S. Sanchez-Solano, M. Brox, E. del Toro, P. Brox, and I. Baturone,
“Model-based design methodology for rapid development of fuzzy
controllers on FPGAs,” IEEE Trans. Ind. Informat., vol. 9, no. 3,
pp. 1361–1370, Aug. 2013.

[8] I. Bicchierai, G. Bucci, L. Carnevali, and E. Vicario, “Combining UML-
MARTE and preemptive time Petri nets: An industrial case study,” IEEE
Trans. Ind. Informat., vol. 9, no. 4, pp. 1806–1818, Nov. 2013.

[9] M. Wehrmeister, C. Pereira, and F. Rammig, “Aspect-oriented model-
driven engineering for embedded systems applied to automation sys-
tems,” IEEE Trans. Ind. Informat., vol. 9, no. 4, pp. 2373–2386,
Nov. 2013.

[10] M. Pajic et al., “Model-driven safety analysis of closed-loop medi-
cal systems,” IEEE Trans. Ind. Informat., vol. 10, no. 1, pp. 3–16,
Feb. 2014.

[11] D. Harel, “Biting the silver bullet: Toward a brighter future for system
development,” Computer, vol. 25, pp. 8–20, 1992.

[12] W. Reisig, Petri Nets: An Introduction. New York, NY, USA: Springer,
1985.

[13] R. Zurawski and M. Zhou, “Petri nets and industrial applications: A
tutorial,” IEEE Trans. Ind. Electron., vol. 41, no. 6, pp. 567–583,
Dec. 1994.

[14] C. Girault and R. Valk, Petri Nets for System Engineering: A Guide to
Modeling, Verification, and Applications. New York, NY, USA: Springer,
2003.

[15] L. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Treves, “A primer
on the Petri net markup language and ISO/IEC 15909-2,” Petri Net
Newslett., vol. 24, no. 76, pp. 9–28, Oct. 2009, presented at the 10th
International Workshop Practical Use of Colored Petri Nets and the CPN
Tools (CPN’09).

[16] M. Moalla, J. Pulou, and J. Sifakis, “Synchronized Petri nets: A
model for the description of non-autonomous sytems,” in Mathematical
Foundations of Computer Science, vol. 64, J. Winkowski, Ed. Berlin,
Germany: Springer-Verlag, 1978, pp. 374–384.

[17] M. Rausch and H. M. Hanisch, “Net condition/event systems with
multiple condition outputs,” in Proc. 1995 INRIA/IEEE Symp. Emerg.
Technol. Factory Autom. (ETFA’95), 1995, vol. 1, pp. 592–600.

[18] H.-M. Hanisch and A. Lüder, “A signal extension for Petri nets
and its use in controller design,” Fundam. Informat., vol. 41, no. 4,
pp. 415–431, Dec. 2000.

[19] G. Frey and M. Minas, “Editing, visualizing, and implementing signal in-
terpreted Petri nets,” in Proc. 7th Workshop Algorithmen und Werkzeuge
für Petrinetze (AWPN’00), Koblenz, Germany, Oct. 2000, pp. 57–62.

[20] L. Gomes, J. Barros, A. Costa, and R. Nunes, “The input–output
place-transition Petri net class and associated tools,” in Proc. 5th
IEEE Int. Conf. Ind. Informat. (INDIN’07), Vienna, Austria, Jul. 2007,
pp. 509– 514.

[21] D. M. Chapiro, “Globally-asynchronous locally-synchronous systems,”
Ph.D. dissertation, Dept. Comput. Sci., Stanford Univ., Stanford, CA,
USA, 1984.

[22] M. E. Grass, F. K. Gürkaynak, and P. Vivet, “Globally asynchronous,
locally synchronous circuits: Overview and outlook,” IEEE Des. Test
Comput., vol. 24, pp. 430–441, Sep. 2007.

[23] F. K. Grkaynak, S. Oetiker, N. Felber, H. Kaeslin, and W. Fichtner, “Is
there hope for GALS in the future?” in Proc. 4th ACiD-WG Workshop
Eur. Comm. Fifth Framework Prog., Turku, Finland, Jun. 28–29, 2004.

[24] L. H. Yoong, G. Shaw, P. Roop, and Z. Salcic, “Synthesizing globally
asynchronous locally synchronous systems with IEC 61499,” IEEE
Trans. Syst. Man Cybern. C, Appl. Rev., vol. 42, no. 6, pp. 1465–1477,
Nov. 2012.

[25] F. Pereira, F. Moutinho, and L. Gomes, “Model-checking frame-
work for embedded systems controllers development using IOPT Petri
nets,” in Proc. IEEE Int. Symp. Ind. Electron. (ISIE), May 2012,
pp. 1399–1404.

[26] V. Vyatkin and H.-M. Hanisch, “Practice of modeling and verification
of distributed controllers using signal net systems,” in Report: Proc. Int.
Workshop Concurrency, Specification Prog., Oct. 2000, pp. 335–350.

[27] P. Starke and S. Roch, “Analysing signal net systems,” Institut für In-
formatik, Humboldt-Universität zu Berlin, Berlin, Germany, Informatik-
Bericht 162, Sep. 2002.

[28] M. Nielsen, V. Sassone, and J. Srba, “Towards a notion of distributed
time for Petri nets,” in Applications and Theory of Petri Nets 2001, J-M.
Colom, M. Koutny, Eds. Berlin, Germany: Springer-Verlag, vol. 2075,
pp. 23–31, 2001.

[29] H. Kleijn, M. Koutny, and G. Rozenberg, “Processes of Petri nets with
localities,” School Comput. Sci., Newcastle University Upon Tyne, Tyne,
U.K., Tech. Rep. CS-TR-941, Jan. 2006.

[30] M. Koutny and M. Pietkiewicz-Koutny, “Transition systems of elemen-
tary net systems with localities,” in CONCUR 2006 Concurrency Theory,
vol. 4137, C. Baier and H. Hermanns, Eds. Berlin, Germany: Springer-
Verlag, 2006, pp. 173–187.

[31] F. Moutinho and L. Gomes, “Asynchronous-channels and time-domains
extending Petri nets for GALS systems,” in Technological Innovation for
Value Creation, L. Camarinha-Matos, E. Shahamatnia, and G. Nunes,
Eds. New York, NY, USA: Springer, 2012, vol. 372, pp. 143–150.



MOUTINHO AND GOMES: ACs WITHIN PETRI NET-BASED GALS DESs MODELING 2033

[32] F.-Y. Wang, K. Gildea, H. Jungnitz, and D. Chen, “Protocol design and
performance analysis for manufacturing message specification: A Petri
net approach,” IEEE Trans. Ind. Electron., vol. 41, no. 6, pp. 641–653,
Dec. 1994.

[33] J. Billington, S. Vanit-Anunchai, and G. Gallasch, “Parameterised
coloured Petri net channel model,” in Transactions on Petri Nets and
Other Models of Concurrency, K. Jensen, J. Billington, and M. Koutny,
Eds. Berlin, Germany: Springer-Verlag, 2009, vol. 5800.

[34] S. Christensen and N. Damgaard Hansen, “Coloured Petri nets extended
with channels for synchronous communication,” in Application and
Theory of Petri Nets, vol. 815, R. Valette, Ed. Berlin, Germany: Springer-
Verlag, 1994, pp. 159–178.

[35] C. Maier and D. Moldt, “Object coloured Petri nets—A formal technique
for object oriented modelling,” in Concurrent Object-Oriented Program-
ming and Petri Nets, G. Agha, F. Cindio, and G. Rozenberg, Eds. Berlin,
Germany: Springer-Verlag, 2001, pp. 406–427.

[36] A. Costa and L. Gomes, “Petri net partitioning using net splitting
operation,” in Proc. 7th IEEE Int. Conf. Ind. Informat. (INDIN’09),
Cardiff, U.K., Jun. 2009.

[37] S. Christensen and L. Petrucci, “Modular analysis of Petri nets,”
Comput. J., vol. 43, no. 3, pp. 224–242, 2000.

[38] G. Liu, C. Jiang, and M. Zhou, “Process nets with channels,”
IEEE Trans. Syst. Man Cybern. A, Syst. Humans, vol. 42, no. 1,
pp. 213–225, Jan. 2012.

[39] F. Moutinho and L. Gomes, “Towards distributed execution of Petri net
conflicts through model transformation,” in Proc. IEEE Int. Conf. Ind.
Technol. (ICIT), Feb. 2013, pp. 1416–1421.

[40] F. Moutinho and L. Gomes, “Augmenting high-level Petri nets to support
GALS distributed embedded systems specification,” in Technological
Innovation for the Internet of Things, Camarinha-Matos, Ed. New York,
NY, USA: Springer, 2013, pp. 221–228.

[41] R. David and H. Alla, “Non-autonomous Petri nets,” in Discrete,
Continuous, and Hybrid Petri Nets. Berlin, Germany: Springer-Verlag,
2010, pp. 61–116.

[42] J. L. M. Grevet, L. Jandura, J. Brode, and A. H. Levis, “Execution strate-
gies for Petri net simulations,” Lab. Inf. Decision Syst., Massachusetts
Inst. Tech., Cambridge, MA, USA, LIDS-P-1739 newsletterInfo: 32,
1988.

[43] R. Campos-Rebelo, F. Pereira, F. Moutinho, and L. Gomes, “From IOPT
Petri nets to C: An automatic code generator tool,” in Proc. 9th IEEE
Int. Conf. Ind. Informat., Jul. 2011, pp. 390–395.

[44] F. Pereira and L. Gomes, “Automatic synthesis of VHDL hardware
components from IOPT Petri net models,” in Proc. 39th Annu. Conf.
IEEE Ind. Electron. Soc. (IECON’13), Vienna, Austria, Nov. 2013,
pp. 2214–2219.

[45] F. Moutinho, L. Gomes, A. Costa, and J. Pimenta, “Asynchronous
wrappers configuration within GALS systems specified by Petri nets,” in
Proc. IEEE Int. Symp. Ind. Electron. (ISIE), May 2012, pp. 1357–1362.

[46] F. Moutinho, J. Pimenta, and L. Gomes, “Configuring communication
nodes for networked embedded systems specified by Petri nets,” in Proc.
IEEE Int. Symp. Ind. Electron. (ISIE), May 2013, pp. 1–6.

Filipe Moutinho received the Engineering and
M.Sc. degrees in electrical and computer engineering
from the Faculty of Sciences and Technology (FCT),
Universidade Nova de Lisboa (UNL), Lisbon, Portu-
gal, in 2003 and 2009, respectively. Currently, he is
pursuing the Ph.D. degree in electrical and computer
engineering at the Universidade Nova de Lisboa.

From 2002 to 2006, he was a Junior Teaching
Assistant in the area of computational and percep-
tional systems with the Department of Electrical
Engineering, FCT, UNL. From 2006 to 2007, he was

a Teaching Assistant at Escola Náutica Infante D. Henrique, Oeiras, Portugal.
Until 2009, he was a Software Engineer with the Enterprise NewHotel
Software, Lisbon. He worked on several research projects at the Center of
Technology and Systems (CTS), UNINOVA Institute, Lisbon. His research
interest includes the model-based development of embedded systems.

Luı́s Gomes (M’96–SM’06) received the Elec-
trotech Engineering degree from the Universidade
Técnica de Lisboa, Lisbon, Portugal, in 1981, and
the Ph.D. degree in digital systems from the Univer-
sidade Nova de Lisboa, Lisbon, in 1997.

He is a Professor with the Electrical Engineering
Department, Faculty of Sciences and Technology,
Universidade Nova de Lisboa, and a Researcher
at the UNINOVA Institute, Lisbon. From 1984 to
1987, he was with Empresa de Investigação e Desen-
volvimento de Electrónica SA (EID), Charneca da

Caparica, Portugal, a Portuguese medium enterprise. He is an author/coauthor
of more than 200 papers published in journals, books, and conference
proceedings. His research interests include the usage of Petri nets and
other concurrency models applied to reconfigurable and embedded systems
codesign.

Dr. Gomes has served as a General Co-Chair or a Program Co-Chair for
more than 17 IEEE conferences. He serves as an Associate Editor for the
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS (2009–present), and
for the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS (2005–2008,
2011–present), among other editorial boards.


